I have picked the median market values of two bedroom homes within seven LA counties to visualize them over time and compare them with each other.
The counties that I have chosen are:
- Beverly Hills (of course, why not),
- Santa Monica (this area is really fancy too),
- Downtown Los Angeles
- West Los Angeles
- Culver City
- Brentwood
- Westwood
As you can see from the above chart, there is basically the same pattern of the median market value of two bedroom homes within each chosen LA neighborhood, and I really like the prices back in 2000.
The source of the information is https://www.quandl.com/. Latest evaluation date for the dataset is July 31, 2015. I was using this example to visualize my data.
var margin = {top: 20, right: 100, bottom: 30, left: 70}, width = 760 - margin.left - margin.right, height = 500 - margin.top - margin.bottom; var parseDate = d3.time.format("%Y-%m-%d").parse; var x = d3.time.scale() .range([0, width]); var y = d3.scale.linear() .range([height, 0]); var color = d3.scale.category10(); var xAxis = d3.svg.axis() .scale(x) .orient("bottom"); var yAxis = d3.svg.axis() .scale(y) .orient("left"); var line = d3.svg.line() .interpolate("basis") .x(function(d) { return x(d.Date); }) .y(function(d) { return y(d.price); }); var svg = d3.select("#area1").append("svg") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); d3.csv("AreasCombined.csv", function(error, data) { if (error) throw error; color.domain(d3.keys(data[0]).filter(function(key) { return key !== "Date"; })); data.forEach(function(d) { d.Date = parseDate(d.Date); }); var cities = color.domain().map(function(name) { return { name: name, values: data.map(function(d) { return {Date: d.Date, price: +d[name]}; }) }; }); x.domain(d3.extent(data, function(d) { return d.Date; })); y.domain([ d3.min(cities, function(c) { return d3.min(c.values, function(v) { return v.price; }); }), d3.max(cities, function(c) { return d3.max(c.values, function(v) { return v.price; }); }) ]); svg.append("g") .attr("class", "x axis") .attr("transform", "translate(0," + height + ")") .call(xAxis); svg.append("g") .attr("class", "y axis") .call(yAxis) .append("text") .attr("transform", "rotate(-90)") .attr("y", 6) .attr("dy", ".71em") .style("text-anchor", "end") .text("Price ($)"); var city = svg.selectAll(".city") .data(cities) .enter().append("g") .attr("class", "city"); city.append("path") .attr("class", "line") .attr("d", function(d) { return line(d.values); }) .style("stroke", function(d) { return color(d.name); }); city.append("text") .datum(function (d) { var pos = 0; return {name: d.name, value: d.values[pos]};//use first element }) .attr("transform", function (d) { return "translate(" + x(d.value.Date) + "," + y(d.value.price) + ")"; }) .attr("x", 3) .attr("dy", "-.3em") .text(function (d) { return d.name; }); });};CSS file
body { font: 10px sans-serif; } .axis path, .axis line { fill: none; stroke: #000; shape-rendering: crispEdges; } .x.axis path { display: none; } .line { fill: none; stroke: steelblue; stroke-width: 1.5px; }